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An electron microscope equipped with conventional electron optics can be used as a 'diffractometer' 
for structure research on individual aperiodic objects. The resolution limit of the electron microscope is 
not the resolution limit of the 'diffractometer' and electron structure research with atomic resolution is 
possible. The advantage is that a diffractometer of this type can measure amplitudes and phases. The 
theory is developed in the language of the crystallographer, mainly using the concept of modifying 
functions. It is shown that, as in crystallography, redundancies in structures can be used in the analysis. 

Introduction 

Structure analysis at atomic resolution has been 
confined until now to problems where the scattering 
of a single atom could be amplified by the scattering 
of many other geometrically equivalent atoms, for 
example in crystal structure analysis and analysis of 
gases and liquids. There is no doubt that a structure 
analysis of individual aperiodic objects at atomic 
resolution would be of extreme interest. The only 
chance to do this is to use electrons or other strongly 
scattered particles. One could argue that the object 
will be destroyed before a sufficient number of scat- 
tered particles has been collected. Tile excellent 
results at 'atomic resolution' with the field ion micro- 
scope have shown that this is not true for all objects. 
On the other hand, the structure work itself could 
analyse how atomic configurations of various kinds, 
and gases in vacuum react with electrons* for example. 

An especially interesting diffraction instrument for 
electrons is the electron microscope. It has the enor- 
mous advantage that it yields not only the amplitudes 
but also the phases of the scattered electron waves. 
The difficulty is that the limited resolving power of 
existing electron microscopes does not allow micro- 
grams to be made at atomic resolution. There are 
other difficulties as well, but the resolution difficulty 
is a fundamental one. The simplest way to cope with 
this limit would be to make electron lenses with 
smaller aberrations. However, contrary to light optics, 
this problem turns out to be extremely complicated. 
Sophisticated devices have been proposed (e.g. 
Scherzer & Typke, 1967/68), but the difficulties in 
building and aligning them will be substantial. Sev- 
eral years ago, it was shown (Hoppe, 1961, 1963) that 

* Radiation damage need not be irreparable. It depends 
on whether reverse reactions to the initial structures can take 
place. 

the resolution limit of an electron microscopic objec- 
tive of conventional design (i.e. having a magnetic 
field with rotational symmetry) is not a real limit. It 
was demonstated that there are new ways to achieve 
atomic resolution with an electron microscope of low 
resolving power. In the meantime it has become evi- 
dent that there are several ways of utilizing the 
resolution-extending principle put forward in the first 
publications. It will be shown later that the possible 
solutions can be divided into two classes: zone cor- 
rection methods and image reconstruction methods. 
Tile special solution, proposed in 1961, belongs to 
the first class. Combinations of both schemes are 
possible and useful. 

It often happens in science that work along new 
lines leads to surprising and unexpected implications 
in other directions. Image reconstruction methods are 
characterized by many manipulations in reciprocal 
space. The image itself is then synthesized in an 
analogue or digital computer. It will be shown in 
this paper that the reconstruction process can be 
generalized in such a way that the real physical 
structure, not influenced by the properties of the 
microscope, can be extracted. Thus, the electron 
microscope becomes a tool for structure analysis 
comparable to a diffractometer, the only difference 
being that it measures amplitudes and phases. 

In this paper, a theory covering the aspects of both 
classes of method will be given. As the aim of this 
use of electron microscopes is structure research, the 
theory will be written in the language of the crystallo- 
grapher. This has an additional advantage. It is 
well-known that restrictions in the shape of the atomic 
configuration make it possible to solve structures in 
crystallography without knowledge of phases. In the 
electron structure analysis with the electron micro- 
scope, the phase problem does not exist, but for other 
reasons, the information might be incomplete. The 
knowledge of basic structural features may also make 
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it possible to cope with restrictions in information in 
this case. A part of this paper is devoted to these 
redundancy problems. 

The optical problem 

A comparison of the optical properties of a light 
microscope and of an electron microscope reveals 
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Fig. 1. Pupil functions of a conventional electron microscopical 
objective as functions of the scattering angle 0. U= 100 kV, 
C6=4 mm (a), C6= 1 mm (b), Gaussian plane. The arrows 
show the limiting scattering angle corresponding to the 
Glaser resolution limit for amplitude objects (real part, 
cos 7) and for phase objects (imaginary part, sin 7). The 
corresponding Abbe resolutions d (=0.6 Z/sin 0) are given 
for comparison. Note that the resolution limit for phase 
objects is higher. On the other hand the phase contrast for 
small scattering angles is small. The real and imaginary 
parts of the pupil function in this regions can be regarded as 
modifying functions in the sense of Waser & Schomaker 
(1953). 

remarkable differences. In the light microscope, the 
resolution limit is given by the diffraction limit. There 
is no difficulty in correcting for spherical aberration, 
the only aberration which is important in microscopy.* 

In electron microscopy, there is no difficulty with 
the diffraction limit, but one has to contend with 
spherical aberration. Glaser has defined a 'best 
resolution', using an aperture where the spherical 
aberration is approximately equal to diffraction aber- 
ration. The principle can best be explained if one 
introduces the pupil function of a lens: 

P = e x p  i7(0). (1) 

Reduced to a magnification 1 it follows that for image 
points near the optical axis (Scherzer, 1949): 

7(@= 2i~- (½Zo02-¼C~O 4) (2) 

The wave aberration 7 describes the phase shift of 
the diffracted rays caused by the non-spherical wave 
surface. 7 depends on the spherical aberration constant 
Co, on the distance z0 of the (plane) object from the 
focus, and, of course, on the scattering angle 0 for a 
given wavelength 2. Fig. 1 shows the real and imaginary 
parts of  P calculated for the Gaussian image plane 
(z0 = 0) for two objectives with Co = 4  and Co = 1 mm. 
The first example corresponds to the conventional 
Elmiskop I objective, the second example to something 
like an objective of  conventional design with the lowest 
spherical aberration which could be incorporated 
without undue difficulties into a conventional 100kV 
microscope. The lowest spherical aberration constant 
(Co=0"5 ram) has been achieved by Ruska & Riecke 
in their one field condensor objective (Ruska, 1965). 
For an ideal lens (Co = 0) it would follow tb_at P = 1 in 
the Gaussian image plane. This means that the real 
part of this function could be characterized in Fig. 1 
by a straight line parallel to the 0 axis while the 
imaginary part would be zero for all scattering angles 
in the Gaussian plane (z0 = 0). By the use of such a lens, 
correct imaging would be possible for amplitude 
objects. Zernike (1935) has shown that an ideal lens 
for phase objects corresponds to P =  + i  for 0 ¢ 0  
(i.e. real part is zero and the imaginary part  is + 1 for 
all 0¢0) .  It is easy to see in Fig. 1 that for a small 
range of 0 (i.e. small aperture) P corresponds quite 
well to an ideal lens for amplitude objects. Glaser 
(1952) has shown that the imaging properties of an 
ideal lens will be retained in approximation if the real 
part of  P remains positive in the non screened-off 
0 range. This limit is marked in the real parts of 
Fig. 1 by arrows. A similar argument for the same sign 
of the imaginary part leads to a resolution limit for 
phase objects (again marked by arrows in Fig. 1). The 

* Chromatic aberration can also be corrected, but this is of 
minor importance because chromatic aberration could be 
minimized by the use of monochromatic radiation. Axial 
astigmatism, unknown in light optics, is more an imperfection 
than an aberration. Correction is possible in the instrument. 
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next important step was made by Scherzer (1949). He 
showed that the 0 ranges of the same sign can be 
considerably enlarged if one includes in equation (2) 
a small defocusing term (z0 ~ 0). Fig. 2 shows the pupil 
function P for the same examples as Fig. 1. The 
Glaser aperture can, therefore, be replaced by the 
larger Scherzer aperture and the sharpest image will 
then occur at the Scherzer focus. The next idea for 
the enlargement of the resolution limit was put 
forward in 1961 (Hoppe, 1961, 1963). Fig.3 illustrates 
the principle, again for the two examples Co =4  and 
Co= 1 ram. Employing again the defocusing param- 
eter z0 of equation (2), one can obtain pupil functions 
of the type shown in Fig. 3. These functions do not 
oscillate too rapidly in the ranges of 0 marked by the 1 
arrows. The reason for the oscillations is the periodic 
nature of P for all 7n = 70 + 2rCn (where n is an integer), 
Pn=Po. Using the criterion of the same sign, correct 0 
imaging could for example be achieved for phase 
objects, if the positive regions of the imaginary parts -1 
in Fig. 3 were to be screened off by a system of annular 
screens. Then only the negative parts contribute to 
the image. But of course the transferred information 
will to some extent be incomplete. The question is 
only whether the missing parts of the Fourier trans- 
form will obscure the image. We will return to this 1 
point later. 

This screening off must be done in the aperture 
plane of the objective (e.g. using zone-correction 0 
plates). It can also be carried out by other filtering 
processes which will be discussed in the course of ~1" 
this paper. 

There is an alternative way of applying similar cor- 
rections. In conventional electron microscopes, the 
aperture of the illumination is much smaller than the 

1 aperture of the objective. Thus, the illumination is not 
only monochromatic but also spatially coherent. Let 
us now assume that there is a weakly scattering object. 13 
Q is the complex amplitude formed by the super- 
position of all scattered waves (with the exception of 
the primary wave) and A is the amplitude of the -1 
primary wave. (Propagation is along the optical axis.) 
The intensity in the image plane is then given by 
equation (3). 

I=  I:~ + Io(O + O*) + OQ* (3) 

The important point is that the intensity distribution in 1 
the image plar~e is proportional to the real part of 0 
[i.e. the second term in equation (3)] since the third 
term can be neglected if O <I0". This linear relation 0 
between amplitude and intensity also means a close 
resemblance between the Fourier transform of Q 
(which is responsible for the distribution in the aper- -1 
ture plane) and the Fourier transform of the intensity 
distribution. Therefore, the necessary corrections to 

* If one combines a bright field image with a dark field 
image (I0 = 0), one can separate the second and the third term 
in equation (3). 

the pupil function can be made in two steps. The 
distorted intensity distribution is first regis(ered on a 
photographic plate, and in the second step, the 
Fourier transform of this distribution is generated in 
a light diffractometer or by computation. 

In this Fourier transform the Fourier coefficients 

,e ,ons 

object) will have the correct phases. The phases of the 
other Fourier coefficients can now be corrected by a 
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Fig.2. Pupil functions, calculated for Scherzer's definition of 
resolving power by introducing a defocusing term zoO0. 
Note that the defocusing term chosen in these examples 
enlarges the resolution limit for phase objects but reduces the 
resolution limit for amplitude objects (cf. Fig. 1). The sign 
of phase contrast is reversed. 
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phase shift of using a zc phase-shifting plate in the 
light diffractometer* or by computation and a corrected 
image can be reconstructed. 'Double diffraction' pro- 
cedures of that type were first used by Mar6chal & 

'Croce (1953) in light optics for the correction of 
defocused photographic images. As Co can be made 
zero in light optics, only the first term in equation[(2) 
will be present. Hanszen (1968) and Schiske (1968) 
have proposed using the Mar6chal process in a special 
version which will be discussed later. 

Light optics with coherent illumination has been 
rapidly developed in recent years, stimulated by the 
extensive use of laser sources. It is interesting to see 
tb.at the rrethods of coherent light optics for the cor- 
rection of lens aberrations can be used in electron 
optics. But the similarity of tools does not mean 
similarity in problems. In light optics, spherical aber- 
ration is an unimportant parameter. With Co=O, the 
number of nodes in the pupil function can be fixed 
arbitrarily for a deliberately chosen aperature simply 
by adjusting the defocusing parameter z0. If Co~O, 
then the minimal number of nodes depends on the 
aperture. This number increase rapidly if the maxi- 
mum angle of scattering is substantially enlarged. The 
number of nodes, however should not be excessive. 
It is possible to resolve the pupil function in the 
aperture plane. This resolution depends on the 
coherence of the primary wave and on the chromatic 
aberration. Surprisingly enough, only a factor of 
about 2 to 3 can be gained, compared with the reso- 
lution limits in Figs. 1 and 2, but it is this gain which 
allows us to use a conventional electron microscope as 
a tool for structure analysis at atomic resolution. 

The structure problem 

We shall consider the electron microscope as a dif- 
fractometer. Fig.4 shows the principal relation in 
reciprocal space, x*,y*,z* denote the Cartesian co- 
ordinates]" in reciprocal space, corresponding to x,y, z 
coordinates in real space. Coherent illumination in the 
electron microscope means definition of a single 
primary beam vector s0/L The orientation of the 
primary beam vector will be along the z* axis in 
reciprocal space..~ At atomic resolution all electron 

* Light diffractometers in electron microscopy were first 
used by Klug & Berger (1964) with great success for the study 
of structural features of objects at medium resolutions where 
no electron optical problems occur. The first use of light dif- 
fractometers for the study of electron optical constants under 
conditions of phase contrast and at the limit of resolution has 
been proposed by us and verified in experiments by Thon 
(1966) (see also page 422). 

I" For  aperiodic objects Cartesian (cubic) coordinates are 
the simplest choice, unless special symmetries in the object (as 
in crystallography) suggest more general coordinates. 

~: Il lumination inclined to the optical axis is sometimes use- 
ful. The generalization of the theory to this case is straight 
forward. 

microscopical objects must be considered as three- 
dimensional objects: in fact, they must be regarded as 
thick objects. A foil of only 50 A thickness already 
has the dimensions of a protein molecule. This means 
that the three-dimensional structure (i.e. three-dimen- 
sional Fourier transform) should be studied. One 
direction of illumination and one wavelength mean 
that only points on the surface of the Ewald sphere in 
reciprocal space can be reached. The answer for the 
study of three-dimensional Fourier transforms, almost 
trivial in the case of X-ray structure analysis, is either 
to rotate the specimen for a fixed wavelength or to 
change the wavelength for a given orientation. The 
first method has independently been proposed with 
somewhat different experimental procedures by De 
Rosier & Klug (1968) and by Hoppe, Langer, Knesch 
& Poppe, (1968). The latter method will be difficult 
to apply to electrons, as the acceleration voltage of 
the electrons must be lowered to about 1V. 

With high energy electrons (50--100 kV) only a 
small region of the theoretically accessible reciprocal 
space, necessary for atomic resolution, can be reached 
in the electron microscope. This region, defined by the 
opening of the aperture diaphragm, is marked schem- 
atically in Fig. 4 by the small sphere around the origin 
of reciprocal space. 

Let us first make a general comment. The problem 
is to register at a given orientation and at a given 
resolution an intensity function with a detector (e.g. a 
photographic plate) which can be converted into the 
Fourier transform of the object. The intensity function 
is a real function expressed for example as a density 
in the plate. From general Fourier transform principles 
it follows that the object function must also be a real 
function, if the registration is to take place without 
information loss, but the Fourier transform of a 
complex function will result for two reasons: 

1. The atoms are complex scatterers ('anomalous 
dispersion'). The phases vary with the type of atom. 

2. The Fourier coefficients lie on a curved surface 
(i.e. on the Ewald sphere). 

The Fourier coefficients of a real function obey the 
Friedel rule. If we denote the vector in reciprocal 
space by r* then F_, ,  = F ' r , .  If all atoms scatter 
anomalously but with the same phase shift (e.g. if 
only atoms of the same kind are present) the Friedel 
rule is also valid. 

A curved surface in reciprocal space for a given 
orientation will lead to a formal invalidity of the 
Friede~ rule even in the case of a real structure simply 
because there are pairs Fr, and F_r,  only in approx- 
imation (cf. Fig.4). The deviation from centrosym- 
metry increases with r*. 

We have now been confronted for the first time 
with a general feature of electron structure analysis 
using an electron microscope as a diffractometer. In 
general it is not possible to obtain complete infor- 
mation with one exposure only. Two ways exist of 
coping with this difficulty: 

A C 26A - 3 
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1. One can make several exposures under different 
conditions, provided that in the combination of the 
diagrams the complete information can be found. 
Several exposures will be necessary for the three- 
dimensional scan of the Fourier transform by rotation 
of the specimen. 

2. A knowledge of structural features will be used 
to complete the information. 

In order to develop the theory properly, it is useful 
to generalize the well-known concept of modifying 
functions which has been introduced into X-ray 
crystallography by Waser & Schomaker (1953), if 
the structure factor (Fourier transform) of an aperiodic 
object is given by: 

F x , y , , , -  ~... j exp 2rci(x*x~+y*y~+ z*z~) (4) 
j= l  

then this Fourier transform can be converted into a 
Fourier transform of the same geometrical structure 
but with modified atoms simply by multiplication of 
the Fourier transform by a modifying function S: 

n 

F'r,=SFr,= ~, S~ exp 2rci(x*xy+ y*yy+z*zy) . (5) 
j= l  

The shape of the modified atoms O~ is given by the 
convolution of the unmodified atom 0J with the 
Fourier transform a of the modifying function S: 

O; = e y e .  (6) 

The modifying functions in crystallography (sharp- 
ening of Patterson peaks, weighting functions in 
reciprocal space, transformation of real atoms into 
unitary, normalized, Gaussian atoms) are real and 
positive functions. Now all types of real or complex 
functions are allowed. A second generalization 
concerns the introduction of the individual modifying 
function Sj" 

n 

F ; ° =  ~ SE~ exp 2rci(x*xj+y*y]+z*zj). (7) 
1=1 

As can be seen from equation (7) this procedure 
again retains the geometrical structure of  the atomic 
configuration. But the shapes of  the different atoms 
will be altered in different ways.* Combinations of 
both modifications are possible. 

It is useful to specify a special class of modifying 
functions as 'back-modifying functions'. Their def- 
inition is given in equation (8). 

s s - = u  (8) 
u is a real and positive function. In the ideal case u 
should be equal to unity, but in order to avoid that 
S-  becomes excessevely large for very small values of 
S (or for other reasons) one might be forced to use a 

* A possible use of (7) could for example be the transfer of 
an X-ray structure to a neutron structure. Another applica- 
tion, related to some extent to results in this paper, would be 
the presentation of general projections. 

u<  1 for certain regions in the reciprocal space. The 
modification with S-  will change F'r, to Fr,. If u is 
not equal to unity, the back-modification process 
leads to F,', given in equation (9)" 

u 

F,,=uFr, . (9) 
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Fig. 3. Pupil functions, calculated for z0 ~ 0, corresponding to 
the principles of zone correction plates and image recon- 
struction methods. The arrows separate the slowly oscillating 
regions of the pupil function from the rapidly oscillating 
regions. The destructive influence of the changing sign of 
amplitude contrast or phase contrast on the image point can 
be removed by screening off (e.g. for phase objects) the posi- 
tive regions of the imaginary part in the figure using zone 
diaphragms or reversing the positive sign (phase correction 
zone plates or Mar6chal image reconstruction). Note that 
the resolution limit in this special case (8 zones) will be 
approximately doubled compared with the Scherzer resolu- 
tion limit. 
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F~, will be a good approximation of F,,, because u 
has been defined as a positive number between zero 
and unity. In this case, the back-modified atomic shape 
will not deviate appreciably from the real atomic shape. 
The modifying functions in equations (5) and (7) have 
been defined for the three-dimensional case. The 
microscope acts as a two-dimensional Fourier synthe- 
sizer; therefore, for illumination along z* (Fig.4), 
equations (5) and (7) can be replaced by equations (10) 
and (11): 

n 

Fx,y, = S  ~ exp 2 r c i ( x * x j + y * y j ) ,  (10) 
j=l  

Fx,y,= ~ Sj exp 2ni(x*xj+y*y~). (11) 
j= l  

It is now easy to recognize that the phase shifting or 
pupil function [equation (1)] can be regarded as a 
modifying function. An important modification is 
necessary. Since atoms are phase objects an additional 

n 
phase shift of ~ will occur. The pupil-modifying 

function So can, therefore, be written 

(12) 

?(0) is given in equation (2). In the case of a thick 
object equation (2) must be replaced by the more 

Z ~ 

X* 

SO 
h 

Fig. 4. The Ewald sphere for the electron microscope and defi- 
nition of the coordinates x*,y*, z* of reciprocal space. The 
optical axis and direction of the illuminating vector s0/2 
are along z*. 

general expression: 

)'j(0) =)'0(0)+ 2 zjO 2 . (13) 

zj is the z parameter of an atom with respect to the 
defocusing parameter z0 in equation (2). Equation (13) 
takes into account that in a thick object the focus for 
every atom will be different. 

Sj=exp i (),j(0) + 2 ) "  (14) 

Equation (14) is then an individual modifying function 
which modifies Fr, to F'r, in equation (7). 

The interesting point is that the geometric structure 
will be retained in the image, even if imaging is done 
with aberrations. Only the shape of the atoms will be 
changed. But this change will make it difficult to 
recognize the atoms in the image. Owing to the special 
type of modifying functions in equations (12) and (14) 
the modified atoms will be spread over large regions 
in real space and will show a complicated internal 
structure. Therefore, considerable overlap of dif- 
ferent atoms will occur. Only in the case of the Glaser 
or Scherzer resolution limit will the atoms have a 
point extension. It is also important to note that in 
this case the modified atoms become complex, even if 
the real Born approximation for the atomic scattering 
factors is used. Fig.5 shows the real part and the 
imaginary part of a modified C atom calculated for 
the Glaser and Scherzer resolution limits. With 
coherent illumination, only the real part will be 
registered [equation (3)]. Note that there is a region of 
opposite sign around the real part of the atom, which 
Scherzer has already mentioned. The reason is that 
the real part of the modified scattering factor starts 
from zero (Fig.5).* Fig.6 now shows the real part 
and the imaginary part of the modified C atom, 
modified with the pupil function of Fig.3. Again 
only the real part can be recorded on a photographic 
plate. The complicated extended atomic structure is 
immediately apparent. 

Individual modifying functions mean that atoms 
with different zj parameters will have different shapes. 
Back-modification can only take place for a deliber- 
ately chosen plane within the thick object and is not 
associated with lens properties. 'Focusing-through' is 
also well-known in light microscopy with ideal micro- 
scopic lenses. The interesting point is that this dif- 
ficulty disappears if one regards a microscope as a 
three-dimensional diffraction instrument. Equation (13) 
can be rewritten as equation (15) if one introduces a 
z* parameter. 

71 = 7o + 2rcz*zj , 

1 02 (15) 

* One of the modifying functions, which Waser has in- 
troduced into X-ray crystallography for other reasons, modi- 
fies the atoms in a similar way (Waser, 1953). 

A C 26A - 3* 
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Introducing equatioff (15)~into~(14) and (14) into (11), 
one gets the +b~ee-dimensional Fourier transform 

Fx . . . .=So  ~J~ exp 2zU(x*xt+v*yj+z*zj). (16) 
..... ] = i - -  

A simple,calculation shows that z*,_becomes] 

z*= ~- ( +y )j i(17) 

In equation (16) the modification will be done with 
the non-individual [modifying function So from 
equation (12). Inspection of equation (16) and (17) 

shows that the Fourier transform values Fx.y.,. 
occupy the surface of a sphere with the radius 1/2 
This is not surprising since only points on the surface 
of the Ewald sphere can be reached in a diffraction 
experiment. The most important point is that the 
modifying function becomes non-individual. Approx- 
imations for the back-modification process are, 
therefore, unnecessary. Moreover, the focusing plane 
can to some extent be deliberately chosen. Another 
implication concerns the calculation of three-dimen- 
sional structures by rotating the object. The reciprocal 
planes have to be replaced by segments of the Ewald 

Rep # 
1 "10-=/ 

- 6  - 3 ~  01 ~ 3  6_.. 

" ~ - - . . . . _ Z . . i "  ' -11 ' " ~ " - - 2 - ' ~ ' ~  
/ 

U=100kV 
C atom in the C6 =4mm 
Gaussian image plane az=0 

aperture= 0"0066 tad 

(a) 

2'10 -2'. 

- 6  ~ - 3 /  0 
--I" 

-2  

x(A) 

x(A) 

R e p  

U= 100 kV 

C atom in the C6=lmm 
Gaussian image plane Az=0 

aperture=0"0093 tad 

2"10-2 t Re p 

I l 
..... Ol , / ' - ~ . ~ - ~ _  _ 

-8 -6 -4 -2, -1 

~ -  i / -2 
U=100kV 

3, m C atom \ ' . ~  C6 = 1 m 
in Scherzer's focus -4: Az=675A 

aperture = 0"0116 rad 

-g'=~-6J'-~" -2 -~l 2 4 - - ~ 6 - - - - %  x(A) 

(d) 

t Re P 
1"10-2~ 

! 

x _ ~  U=100kV 
C atom - 31 C6 =4mm 

in Scherzer's focus Az= 1350 A 

aperture=O'O082 rad 

,Imp 

• -""-  ' _011~ ' ' " ~ - ~  -6 -3 3 6 x(A) 

b) (c) 

Fig. 5. Real and imaginary parts Re 0 and Im 0 of the complex image amplitude 0 of a single C atom calculated for Glaser and 
Scherzer resolutions and the pupil functions in Figs. 1 and 2. In the bright-field image, only the real part can be seen. The 
substantial amelioration of the image for the Scherzer focus [Fig. 5(c) and (d)] compared with the image in the Gaussian plane 
[Fig.5(a) and (b)], Glaser resolution] is immediately apparent. Note the reversed sign of Re 0 at Scherzer resolution and 
compare the corresponding negative sign of the imaginary part of the pupil function in Fig.2. The Scherzer resolutions 
are approximately 3/~ (Cd=4  mm) and 2/~ (C6= 1 mm). According to equation (3) in a bright field the image amplitude of 
the atom will be 1-2 Re 0. 
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sphere. It is of fundamental importance that an 
infinite depth of focus is not necessary for three-di- 
mensional reconstruction. As we have seen an electron 
microscope can be used as a diffractometer which, 
under the assumption of coherent illumination, 
delivers the modified structure factor F' ,y,  on the 
surface of the Ewald sphere [equations (16) and (17)]. 
The non-individual modification function is given in 
equation (12) [cf. equations (1) and (2)]. In the image 
plane the complex image amplitude ~' given by 

0'=y '~  I I F~,,y, exp [-2~ri(x*x+y*y)]dx*dy* (18) 

will be formed. In the detector (e.g. a photographic 
plate) only the intensity [equation (3)] can be registered. 
In the case of weakly scattering particles the third 
term of (3) can be neglected. Back-modification 
processes are defined as processes which convert the 

tRap ,,°;I 
-8  -6  -4  -2  2 4 6 8 x(A) 

h ~ 

U=IOOkV 

C6 = 1 m m 

modified C atom Az=3100A 
aperture =0"0217 rad 

t Imp 
1'10-=~ 

~ . ~ J - ~ .  _ ._-  , 
_0 

-1! 
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1.10-= 

1 
-8  -6  -4  -2  0 2 4 6 8 x(A) 

-2\ / U=lOOkV 

-3 C6 =lmm 
C atom, imaged with Az=3100A 

zone-plate corrected objective 
aperture=O'0217 rad 

t lmp 
1 '10-=I 

11 

-8  -6  ---4 ~-2 ~ 2-- 4 6 8 x(A) 

1 
(b) 

Fig.6. Strongly defocused C atom image without and with 
insertion of a zone plate calculated for the pupil function in 
Fig. 3(b). Again, only the real parts will be seen in the bright- 
field image. Note the low contrast in Fig.6(a), which will 
make image reconstructions difficult. Additional ripples [not 
shown in (a)] occur at 14, 20 and 23/~. In Fig. 6(b),'the resolu- 
tion is nearly doubled against the corresponding resolution 
in Fig.5(d). The amplitudes Re 0 in the image centre are 
approximately equal in both cases. 

modified structure factors F '  as well as possible into 
the unmodified structure factor F [equation (4)]. 

Zone-correction plates 

Zone-correction plates are inserted into (or near to) 
the focal plane of the objective. They are filters with. 
transparent regions whose shape depends on the back- 
modifying function applied. In the ideal case u in 
equation (8) should be unity and the zone correction 
plate should be a phase shifting foil formed according 
to S-  in equation (19). 

S~-=exp [ - i ( 7 0 +  n/2)] (19) 

[see also equation (12)]. A lens equipped with such a 
correction plate would work like an ideal lens equipped 
with a Zernike phase-shifting plate. Another back- 
modifying function is defined in (20): 

S o =  1 f o r 0 < 7 0 + z / 2 < z c ,  
S~- = - 1 for z~ < 70 + z/2 < 27r. (20) 

It leads to a system of concentric annular diaphragms 
made of a phase-shifting foil (phase shif t=n)  of 
constant thickness. This back-modification will lead 
to a pupil function according to Fig. 3 with the dif- 
ference that the negative regions are converted to 
positive regions by the additional phase shift of n in 
the phase-shifting foil. 

Phase-shifting plates are difficult to apply in elec- 
tron microscopy as they scatter electrons. This 
scattering can be avoided if the phase-shifting foil is 
replaced by annular screens. The back modifying 
function is defined in (21): 

So=1 for 0<70+~r/2<zc,  
So = 0  for zr< 7o+rC/2<2~. (21) 

In this case the negative regions of the pupil function 
in Fig.3 will simply be screened off. Hanszen (1966) 
proposed to take a set of electron micrographs using 
a set of zone plates, calibrated for different defocusing 
parameters. Thus zero regions in the Fourier trans- 
form in one micrograph might be supplemented by 
other micrographs and a combined image could be 
built up. The experimental difficulties of verifying 
this scheme might be considerable. It has been shown 
in detail (Langer & Hoppe, 1966/67, 1967a, b) 
that in all of these cases true atomic images will 
appear at a resolution defined by the diffraction limit. 
An additional advantage is that the positive region 
around the image point (Figs. 5 and 6) will disappear. 
The three back-modifications differ in the noise, 
(diffraction ripples) which increases from equations 
(19) to (21). The first experiments with zone-cor- 
rection plates have already been published (M/511en- 
stedt, Speidel, Hoppe, Langer, Katerbau & Thon, 
1968). 

~It should again be stressed that, according to 
equation (3), only intensities can be registered. This 
can lead to difficulties if atoms show considerable 
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anomalous scattering. If only atoms of one kind are 
present, then this difficulty can be removed. In this 
case, the modified structure factor F' (for thin objects) 
can be written according to equation (22). 

i$ 

F'x,y,=So exp i~0 ~ I/1 exp 2rci(x*xj+y*yj). (22) 
j=l  

The anomalous phase shift ¢ can then be introduced 
into the non-individual modifying function (23). 

S~ = S O exp i~0. (23) 

In the case of objects with different kinds of atoms, 
a mean anomalous scattering [equation (24)] can be 
introduced in order to produce, by back-modification, 
a real and positive amplitude Q in approximation. 

n 

~p= ~. (24) 
j - i  n 

With zone-correction plates dark field imaging will be 
possible because the square of the positive real func- 
tion Q [third term in equation (3)] can be converted 
into the function itself. 

Mar~chal-type image reconstruction 

As has already been pointed out, the bright-field 
image (coherent illumination) of a weakly scattering 
object is in good approximation proportional to the 
real part (Q + Q*) of the image amplitude [equation (3)]. 
Using equation (24) and neglecting the residual 
anomalous scattering of the atoms, we obtain the 
Fourier transform of the registered image for a thin 
object 

n 

F'oy.=(S0 expi~+S~ exp -i~) ~ IfJl 
j = l  

exp 2rci(x*x~ + y*yj) . (25) 

This Fourier transform may be calculated from the 
registered image. After correction of F'  to the struc- 
ture factor F of the non distorted structure using the 
back-modifying function (26) 

S~-'=(So exp ifv+S~ exp - i~ )  -I (26) 

the undistorted image can be calculated.* The Mar6- 
chal type modifying function is, in contrast to the 
modifying functions hitherto discussed, a real function. 
If there is no anomalous scattering, the modifying 
function is equal to the imaginary part of the pupil 
function in Fig. 3. The difficulty is that the back- 
modifying function (26) will become infinite if the 
modifying function becomes zero. Weighting functions 
must, therefore, be used. A simple choice for S~-' is 
given in (27). 

Sy'= 1 ifS~ is positive, 
S~-' = - 1 if S~ is negative. (27) 

* As an alternative to calculation, the whole reconstruction 
process can be made in optical analogue devices. 

It can be shown that the image of a zone-correction 
plate corrected electron microscope according to (20) 
and a Mar6chal-type reconstruction according to (27) 
will lead to the same result. 

It can be seen from equation (25) that the F'  will be 
zero at the nodes of the modifying function regardless 
of the particular structure studied. Thus, Fourier 
transformation of an electron micrograph will im- 
mediately reveal the constants of the pupil function 
for this special diagram. These nodes have first been 
experimentally studied on light diffractograms of 
electron micrographs of a carbon foil by Thon 
(footnote *, page 417). These nodes not only reveal 
spherical aberration and defocusing but also axial 
astigmatism and drift (Frank, 1970). This objective 
measure of the constants of the optical path built 
into every electron micrograph makes it possible to 
separate unambiguously the structure from aberr- 
ations. Hanszen (1968) and Schiske (1968) have 
proposed to use the Mar6chal-reconstruction process 
for electron microscopy in a special version, in which 
a series of electron micrographs at different foci will 
be taken and evaluated. Such an organization of the 
measurements has the advantage that information 
lost near the nodes on one diagram can be replaced by 
information on other diagrams with different defocus- 
ing parameters. 

Determination of the complex image amplitude 

New image reconstruction schemes. 
Even the ideal back-modifications (19) and (26) 

(forgetting the infinity difficulties) are error-free only 
if the image amplitude • is real. The reason for this 
is fundamental. The intensity function registered on a 
photographic plate is real and modifications of that 
function can only lead to real functions. Only if the 
image amplitude is real (or can be converted to a real 
function) can a 1:1 correlation between intensity and 
amplitude be established. It has already been pointed 
out that for two reasons [(i) different atoms produce 
different anomalous scattering, (ii) the structure factors 
lie on the Ewald sphere] the image amplitude is com- 
plex. Using equation (16) to (18) we separate the 
structure factor Fa of the 'real' structure from the 
structure factor F2 of the 'imaginary' structure. 

F~,y,=So ~ (,f~ +if~ exp 2rci(x*xj+ y*yj) 
j = l  

= SoF1 + iSoF2 

f~ +/ f~= Ifl [ exp i(~0j + 2rcz*zj) 

n 

FI= ~ f ~  exp 2rci(x*x, +Y*Yi) 
j= l  

n 

F2 = ~.. fS' exp 2rci(x*xj + yyj). 
j = l  

(28) 



W. HOPPE 423 

Separating So into real and imaginary parts 

S0=a~ + io" 0 (29) 

we get: 

r',y,=a'oFx -crgF2- i(aoF 1 + a'oFz)= A -  iB . (30) 

F', the structure factor which has been modified by the 
pupil-function, can again be separated into a structure 
factor of a real structure A and the structure factor of 
an imaginary structure B. In a coherent bright field, 
only the structure factor A of the real part of the image 
amplitude [equation (3)] can be found by Fourier 
transformation. The important point is that A is a 
weighted sum of F~ and F2. Separation of F~ and F2 
is possible, if there is a second measurement with 
other weights a o and no. Let us assume, for example, 
that a second exposure is taken under the same 
conditions the only difference being that a Zernike 
phase shifting foil (phase shift, n/2) is inserted into 
the aperture of the electron microscopic objective. 
Owing to this additional phase shift, the structure 
factors B of the imaginary part of the modified image 
amplitude will now be registered on the plate. These 
two measurements therefore register the complete 
complex and modified image amplitude. It can easily 
be seen from equation (3) that F1 and F2 can be 
calculated from A and B if the coefficients a~ and a 0 
are known. A similar separation of Fx and F2 can be 
achieved if two exposures are taken with a different 
focus. Then the modification function So will change 
and thus also the coefficients a~ and er 0 will have 
different values. The real and imaginary parts of the 
structure factors F1 and F2 can then be calculated 
from the measured real and imaginary parts of the 
structure factors A~ and A2 of the two exposures by 
solving two sets of linear equations with two unknowns. 

IAtlcos ~t =a~.llFllcos (0x-Croal F2lcos (02 
IA2[ cos 0e 2 = try,z] Ell cos  ~0a - goal F21 cos (02 
lAll sin ~l =tro,l[ Fl[ sin (0x- cro, ll F2I sin (02 
[A2[sin~2--tr6,2[Ftlsin(0t-tro,2[F21sin(02. (31) 

The calculation depends on the coefficients tr' and 
tr" the Fourier coefficients of which can be calculated 
with good accuracy from two Mardchal images. Again 
the lost information can be restored using redundancy 
principles. Another way is to enlarge the experimental 
basis taking focusing series; the evalution scheme of 
Schiske (1968) provides the necessary theoretical basis 
for such a type of calculations. 

Another reconstruction scheme for the determina- 
tion of the complete complex image amplitude Q has 
recently been proposed by Hoppe, Langer & Thon 
(1969). The idea is to screen off a semicircle in the 
aperture plane in order to halve the information 
which has to be registered on the photographic plate. 
It is well-known that the Fourier transform of a 
complex structure has no centre of symmetry. If the 
other half of the aperture in a second experiment is 

screened off, the complete information for building 
up a complex image amplitude from both exposures 
should be obtained. If one half of the Fourier space is 
screened off, the amplitude in the image plane Qp is 
given by the partial Fourier transform (32). 

01,p=C ' exp [-2z~i(x*x+y*y)]dx*dy*. 
0 - -  

(32) 
The image amplitude, generated by the scattered rays 
through the other semicircle has the form 

l°°l°°ooFx,_y, (x*x+y*y)d 02.p = C ' exp [ -  2zci x*dy*. 
0 - -  

(33) 

QI,p and Q2,p are complex, corresponding to the 
extreme asymmetry in reciprocal space. Now the 
photographic plate only registers (0+Q*). 0*l,p is 
simply the conjugate complex function of QI,~, given in 
equation (34). 

e~a,= C '* exp 2zci(x*x + y*y)dx*dy* . 
0 - 

(34) 
The second term in equation (3) can, therefore, be 
written after some trigonometric transformations (35), 

• S ° L ,  Io(Ola,+al.p)=2Io C F~,,,I cos g2 cos 2n(x*x 
0 - -  

x sin ~ sin 2rc(x*x+y*y)dx*dy (35) 

where 
(2 = (0,,,,, + ~'0+ 7~/2. (36) 

It can immediately be seen that equations (35) and 
(36) give the theoretical basis for an excellent image 
reconstruction process. A Fourier analysis of the 
intensity function on the photographic plate delivers 
the absolute values I F x , y , I  of the correct structure 
and the phases 12 without a weighting function which 
lowers the accuracy, in contrast with the Mardchal 
reconstruction. The phases f2 are incorrect but using 
expression (36) they can most easily be converted into 
the correct phases (0x,y,. It is obvious that the same 
reconstruction can be made with 02,u. In the same 
paper, a reconstruction process has also been described, 
which needs only one exposure for the determination of 
the Fourier coefficients of the complex structure. This 
is at first surprising as it seems to violate our postulate 
that the double information of a complex structure 
cannot be registered in a real structure. The answer 
is that the image of the photographic plate has in one 
direction twice the resolution required for the electron 
microscopic image. Therefore, twice the information 
can be stored on the photographic plate. This recon- 
struction scheme will not be discussed in this paper, as 
it cannot be done with data taken in a conventional 
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electron microscope. Instead of bright field imaging, 
where the primary wave is the reference wave, a 
special illuminating system must be used which 
delivers a separate reference wave (as in holography) 
which is inclined against the primary wave. A third 
image correction process for complex functions using 
inclined illumination (described in the same paper and 
not reported here) can only be used for very thin 
specimens. 

In the case of a focused ideal lens Y0 in equation (36) 
becomes zero. In the case of a phase object, the image 
will resemble the first derivative of the Fourier trans- 
form. Th0 atoms will consist of two equal parts, one 
with positive and the other with negative contrast. 

The determination of the complex image amplitude 
has an additional implication in electron structure 
analysis. The anomalous phase shift ~0 for heavy 
atoms is appreciably greater than for light atoms. If 
one calculates the real and the imaginary parts of the 
structure, the relation between the weights of light 
and heavy atoms is different. It will therefore be pos- 
sible to calculate a weighted difference image which 
will show only one kind of atom. Thus, a physical 
image difference method, with implications similar to 
the chemical image difference method (Hoppe, Langer 
Frank & Feltynowski, 1969), can be established. It has 
already been pointed out that the half screen recon- 
struction process delivers amplitudes and phases for 
all Fourier coefficients with the same accuracy. It is 
therefore advisable to use it also in cases where 0 is 
real. Then only one exposure is necessary. A third 
exposure (or in the case of a real 0, and second ex- 
posure) of the Mar6chal type might be useful for the 
determination of the optical constants.* 

Difficulties with reconstruction schemes 

The zone correction scheme has the advantage that 
the images of the atoms peak up in the electron 
diagram to small regions with high contrast. This is no 
longer the case if one uses reconstruction schemes. 
The atoms are spread over wide regions in real space 
and the image of a single atom has, therefore, low 
contrast. If the object is much larger than the atom, 
then the contrast difficulties might partly disappear, 
as the contrast is enhanced by the overlapping of the 
atomic images. In any case it is advantageous to 
choose the optical parameters, especially the defo- 
cusing term, in such a way that the size of the distor- 
ted atoms is also as small as possible. Especially in the 
case of very small objects or of objects which have the 
structure of a narrow fibre, this point might be impor- 
tant. Another difficulty will appear if only a small 
region of an electron micrograph is studied. Other 
regions of the micrograph may no longer simply be 
screened off. It can be seen that at the border of this 

* Structural changes induced by radiation are, therefore, 
unimportant for these measurements. 

region atoms will be mutilated whereas parts of atoms 
outside this region will contribute to the structure 
within that region. Again, only if the studied region 
in an electron micrograph is much larger than the 
size of the atom can these border difficulties be 
neglected. This effect can be demonstrated if one 
takes light diagrams of large and small regions of an 
electron micrograph. The multilated atoms do not 
have the same Fourier transform as the unmutilated 
ones and they add a background which obscures the 
nodes. Figs.7 and 8 show examples. If the physical 
size of the object is limited, then half of the virtual 
size of the distorted atoms has to be added at the 
borders (Fig. 9) to the region taken for reconstruction, 
if an error-free reconstruction is to result. The demand 
for a limited object in space is difficult to accomplish 
as every molecular object has to be supported in some 
way. Perhaps the combination of the image difference 
methods with reconstruction methods might be the 
answer. 

These difficulties make it improbable that image 
reconstruction methods will entirely replace zone cor- 
rection methods. There is another argument in 
favour of this conclusion. Electron diagrams taken 
with zone correction methods deliver a good approx- 
imation of the structure without calculation. It is 
quite probable that real structure research will be 
done on small particles, on small regions and in three 
dimensions. But it will be impossible to do such 
research if it cannot be preceded by a search of electron 
micrograms in a conventional way. It is beyond 
question that micrographs at high resolution with 
atomic peaks corrected for aberrations of different 
kind provide the best basis for such a search. Recon- 
struction methods will be necessary in order to check 
whether there are any errors in focus, axial astigma- 
tism etc. 

The use of redundancies in electron structure research 

As has already been pointed out, the most successful 
use of redundancies occurs in X-ray crystal structure 
analysis. In many cases, the knowledge of the basic 
structural features of an atomic structure makes it 
possible to recover the phase information knowing 
only the absolute values of the Fourier coefficients. 
This type of information loss does not occur in 
electron structure research using the methods discussed 
in this paper, but with some methods, further infor- 
mation loss can lead to difficulties. Let us assume 
that a zone correction plate has been used which 
screens off structure factors with wrong (opposite) 
phases. It has already been pointed out that real 
atomic images are formed, despite the lack of approx- 
imately half the information, but the background 
noise might obscure atoms in unfortunate cases. If 
the amplitudes and phases of the lost structure factors 
could be restored by calculation, then an ideal struc- 
ture image could be synthesized. 
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Fig.7. Light-optical diffractogram of the electron micrograph of an amorphous carbon foil (Thon, 1966), with bright field, 
strongly underfocused image, U=100 kV. The diffractogram corresponds to an object region of 1000 A O [(circular 
aperture in the diffractometer 2 cm 0);  due to the large object region, the nodes in the imaginary part of the pupil function 
appear very clearly in the diffractogram. 

Fig.8. Light-optical diffractogram (from the same electron micrograph as in Fig.7) from an object region which is so small 
(200 A O; aperture in the diffractometer 0.4 cm 0)  that the nodes, visible in Fig.7, are already obscured. 

To face p. 424 



W. H O P P E  425 

Ways for the introduction of redundancy principles 
are discussed below. 

1. Squaring (Sayre, 1952) and phase correction (Hoppe 
& Gassmann, 1968). 

These procedures are based on the fact that (three- 
dimensional) atomic structures consist of resolved 
positive peaks. In X-ray crystallography, they can be 
used to determine or to correct phases. It is easy to 
show that both procedures yield amplitudes and phases 
of structure factors which have not been measured. The 
calculation of the missing structure factors has to be 
done in an iterative process. The newly determined 
structure factors will be added in the next cycle to the 
whole set of structure factors which then forms the 
basis for the next calculation of structure factors. 
Convergence is achieved when a calculation of the 
measured structure factors yields the measured values 
themselves. 

This scheme needs resolved atoms and can, there- 
fore, only be applied if three-dimensional methods are 
used. In order to check the idea, we have made the 
following test calculations. We divided the reciprocal 
space of different crystal structures into equidistant 
spherical zones with a thickness of the dimension of 
the unit cell. We then calculated the crystal structures, 
setting the structure factors in the even (or odd) zones 
to zero. In all cases, we again found the atomic struc- 
ture which was partly obscured by a high background 
noise. The important point is that phase correction 
starting from these incomplete sets revealed the com- 
plete set with high accuracy.* 

2. Redundancy due to an object of finite size 
Procedures based on this redundancy principle have 

no counterpart in X-ray crystallography. They are 
based on the sampling theorem of Whittaker (1915) 
and Shannon (1949). The advantage is that atomic 

* Details of these calculations will be published elsewhere. 
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Fig.9. 'Real area' and 'virtual area'. Extended image points 
need for correct Fourier transformation the larger area with 
the dotted border. If the image points are pointlike, the 
smaller area will be sufficient (cf. Figs. 7 and 8). 

resolution is not necessary. Therefore, this restoration 
of Fourier coefficients can also be done in two dimen- 
sions or at less than atomic resolution. 

We assume that the object is limited by a rectangle 
with the edges a and b. Then the Fourier coefficients 
of the continuous Fourier transform can be replaced 
by the discontinuous Fourier coefficients (structure 
factors) Fnic of the reciprocal lattice with the unit-cell 
dimensions a* and b*. The corresponding Fourier 
synthesis yields a lattice with the unit-cell dimensions 
a and b in which every cell contains the object infor- 
mation. The Whittaker-Shannon theorem simply 
states that the aperiodic object, and thus the contin- 
uous Fourier transform, can be restored if the lattice 
is multiplied with a rectangle function which is 1 
inside and 0 outside the rectangle a,b. The corres- 
ponding convolution in reciprocal space can be written 

where 

Fx 7 y; = ~ ~ FhicChicj, (37) 
h k 

Chlc] 
sin n(ax~, -h)  sin n(by'j - k )  

n(ax~ -h)n(by~ - k )  

Equation (37) can be used in two ways. Knowing 
Fh,ic, every value FxTu7 of the continuous Fourier 
transform can be calculated. On the other hand, if at 
least as many Fx~ u~ have been measured as there are 
Fh,ic to be determined, then the Fn,ic can be solved 
assuming that equation (37) constitutes a set of linear 
equations with Fn,ic unknowns. The important point 
is that owing to the redundancy resulting from the finite 
size of the object, even a partial measurement of the 
Fourier transform contains enough information to 
construct the image. 

It should be mentioned that this restoration scheme 
was first proposed to increase the resolution limit in 
microscopy (Barnes, 1966) and for three-dimensional 
reconstruction of images in electron microscopy 
(Hoppe, 1969). In the latter case, it is evident that the 
three-dimensional reconstruction can start immedi- 
ately from the three-dimensional generalization of 
equation (37) using a partial knowledge of the con- 
tinuous Fourier transforms of a number of projections 
of the tilted object. It stands to reason that both 
redundancy principles can be used in a combined way. 
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Arcing Phenomenon in Single Crystals of Cadmium Bromide 
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Solution-grown single crystals of cadmium bromide have been found to exhibit arcing phenomena on 
their oscillation photo~aphs and to give rise to closed rings of various shapes and sizes on Laue photo- 
graphs. These have been explained in terms of the formation, during crystal growth, of tilt boundaries 
consisting of edge dislceations created by simultaneous slip along more than one close-packed direc- 
tion on different basal and non-basal planes. The measurement of arc lengths on these oscillation 
photographs enables an estimate of the density of dislocations within the boundaries to be made. 

Introduction 

This X-ray study of single crystals of cadmium brom- 
ide is one in a series of studies on phenomena of arcing 
and polytypism in the MX2 compounds, which have 
close-packed hexagonal layer structures. Other sub- 
stances of this type, viz. CdI2 and PbI2, have already 
been investigated (Agrawal & Trigunayat, 1969a, b; 
Agrawal, Chadha & Trigunayat, 1970). Practically all 
the 12 crystals investigated in this study exhibit arcing 
phenomena on their X-ray photographs. This con- 
trasts strongly with only 5% such instances in PbI2 
crystals and 42% in CdI2 crystals. Reflexions of various 
shapes, viz. sigma, triangular ring, hexagonal ring, 
double rings, etc., have been observed on the Laue 
photographs. They have been explained in terms of 
tilt boundaries formed by vertical alignment of edge 
dislocations created by slip along more than one 
closest-packed direction on different basal and non- 
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basal planes. In the crystals of CdI2 and PbI2 inves- 
tigated earlier, the slip was found to be confined to the 
basal planes alone. 

Experimental methods 

The orystals were grown from aqueous solutions. At 
room temperature, 5 g of reagent grade CdBr2.4H/O 
were dissolved in 20 cc of ordinary tap water in a 
shallow crystallizing dish. Hydrobromic acid was also 
added to prevent the formation of the hydrated brom- 
ide which forms in purely aqueous solutions. After 
several days, hexagonal crystal platelets of cadmium 
bromide, up to 1 man across and 0.1 mm thick, formed 
in the dish. They were carefully removed from the 
solution and tested for perfection in a polarizing 
microscope before being mounted on the X-ray camera 
in order to obtain oscillation and Laue photographs. 
The a axis oscillation photographs were taken in the 
range 19 to 34 °, i.e. the angle (referred to as (p in the 
following) between the incident X-ray beam and the 
c axis varied between 19 and 34 °. This range was 


